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Abstract—Ordered statistics decoding (OSD) can achieve near
maximum likelihood (ML) decoding performance for BCH codes.
However, Gaussian elimination (GE) that delivers the systematic
generator matrix of the code has an uncompromised latency.
Addressing this challenge, this paper proposes a low-latency
OSD (LLOSD) for BCH codes. Since BCH codes are binary
subcodes of Reed-Solomon (RS) codes, codeword candidates can
be produced using the RS systematic generator matrix, whose
entries can be generated in parallel. By eliminating the non-
binary codeword candidates and identifying the ML codeword,
the LLOSD yields a lower latency as well as complexity than the
OSD. It is shown that the LLOSD can be interpreted as generat-
ing the codeoword candidates through systematic encoding of a
punctured BCH codeword, explaining its low-complexity feature.
Moreover, the segmented variant is proposed to further facilitate
the LLOSD. In order to decode long BCH codes, a hybrid soft
decoding (HSD) is finally proposed. It integrates the LLOSD and
the algebraic Chase decoding that can effectively provide extra
TEPs for the LLOSD, enhancing the decoding performance. Both
the complexity and performance of the proposed decoding are
analyzed, demonstrating their advantage over the relevant state-
of-the-art decoding.

Index Terms—Algebraic Chase decoding, BCH codes, basis
reduction, ordered statistics decoding, subfield subcode

I. INTRODUCTION

Competent short-to-medium length channel codes play a vi-
tal role in realizing ultra-reliable low-latency communications
(URLLC). Bose-Chaudhuri-Hocquenghem (BCH) codes have
a good algebraic structure and distance property, being one
of the best performing short-to-medium length codes. Recent
research [1]–[3] has shown that ordered statistics decoding
(OSD) of BCH codes can achieve a performance close to the
normal approximation (NA) bound [4].
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The OSD was proposed as a near maximum likelihood
(ML) decoding approach for linear block codes [5]. With
the received symbols, the most reliable independent positions
(MRIPs) are identified. The codeword candidates are estimated
through re-encoding the test messages that are formed by
superimposing the test error patterns (TEPs) onto the MRIP
decisions. The re-encoding requires the systematic generator
matrix of the code, which is yielded by Gaussian elimina-
tion (GE). In the systematic generator matrix, columns that
correspond to the MRIPs form an identity submatrix. The
decoding is parameterized by order τ , which indicates the
maximum Hamming weight of the TEPs. For a BCH code
with a length of n and a dimension of k, the OSD exhibits a
complexity of O(kτ + nmin{k, n− k}2), where the first and
second terms correspond to the complexity of re-encoding and
GE, respectively. In order to reduce the decoding complexity,
several skipping rules that help identify the unpromising TEPs
were proposed [6] [7]. Meanwhile, the ML codeword can be
identified during the decoding so that it can be terminated
earlier [8] [9]. This approach has been widely adopted to
facilitate the OSD. The OSD complexity can also be reduced
by segmenting the TEPs, which eliminates the redundant re-
encoding attempts [10]. Alternatively, the reduced decoding
complexity can be exchanged by enhancing its decoding
performance. E.g., the box-and-match algorithm (BMA) stores
a band of the re-encoded symbols outside the MRIPs and
their corresponding TEPs. They will be utilized in the search-
and-match process to generate extra codeword candidates, en-
hancing the OSD performance [11]. Other OSD performance
improvement approaches include the use of multiple MRIPs
bases that expand the volume of TEPs [12]–[14]. The hard
reliability-based OSD [15] is further proposed for scenarios
in which the soft received information is unavailable, e.g.,
the McEliece public key cryptosystem. Despite the competent
decoding performance, the latency of OSD remains challeng-
ing to overcome. This is primarily caused by GE, which is
a sequential process. So far, it has only been addressed by
pre-computing some systematic generator matrices [16]–[18].
In the schemes of [16] and [17], GE will only be incurred
if the desired codeword cannot be produced by the pre-
computed matrices. In [18], GE is not required as it only
utilizes a pre-computed systematic generator matrix for re-
encoding. The potential TEPs are enumerated according to
weight orders defined by the guessing random additive noise
decoding (GRAND) [19] methods. However, since the re-
encoding is not based on the MRIPs, its decoding performance

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3613748

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 26,2025 at 03:00:49 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INFORMATION THEORY, ACCEPTED 2

degrades from the conventional OSD.
Since BCH codes are binary subcodes of Reed-Solomon

(RS) codes, the RS decoding techniques can be applied for
BCH codes. E.g., in practice, the Berlekamp-Massey (BM)
algorithm [20] has been widely applied for decoding BCH
codes. It can correct errors up to half of the code’s mini-
mum Hamming distance. The interpolation-based Guruswami-
Sudan (GS) algorithm [21] can correct errors beyond this
limit. Utilizing the soft information, its soft-decision variants
include the Kötter-Vardy (KV) [22] and the low-complexity
Chase (LCC) decoding algorithms [23]. In contrast to the
OSD, Chase decoding utilizes the complementary reliability
information, i.e., those of the least reliable positions (LRPs).
There exist various approaches to facilitate LCC decoding
[24] [25]. Their simplifications for decoding BCH codes were
reported in [25] [26]. Interpolation of LCC decoding can be
realized using the basis reduction (BR) technique, formulating
the LCC-BR decoding [27]. It yields both complexity and
latency advantages over the LCC decoding that is realized
by Kötter’s interpolation. The OSD and Chase decoding have
been combined in [28] [29], where Chase decoding enables
a reduced OSD order for yielding the near ML decoding
performance. However, this remains a rigid integration in
which Chase decoding and the OSD cannot exchange or share
their computation.

Although the OSD can yield a near ML decoding perfor-
mance for BCH codes, its decoding complexity remains expo-
nential in its decoding order. Meanwhile, its uncompromised
GE latency remains unsolved. This limits its applications,
especially for decoding longer BCH codes. Addressing them,
this paper proposes a low-latency OSD (LLOSD), which can
effectively reduce the decoding latency. It is designed based
on the property that BCH codes are binary subcodes of RS
codes. Hence, the BCH codeword candidates can be produced
through generating binary RS codewords, eliminating the need
for GE. By identifying the ML codeword candidate and
terminating the decoding earlier, this new decoding can also
yield a low decoding complexity. It is shown that the proposed
LLOSD can be interpreted as a serial concatenation between
the parity-checker of a punctured BCH code and a systematic
encoder of a binary linear block code. It helps explain the low-
complexity feature of LLOSD. A segmented variant is further
proposed to facilitate the LLOSD. The RS code algebra also
enables its integration with the LCC-BR decoding, forming
the hybrid soft decoding (HSD). It helps restrain the LLOSD
order, being suitable for decoding long BCH codes. Major
contributions of this work are summarized below:

• An LLOSD algorithm is proposed. It circumvents the
latency-orienting GE. It is shown that the BCH codeword
candidates can be produced through the RS systematic
generator matrix. By identifying the most reliable posi-
tions (MRPs), the matrix can be constructed using the La-
grange interpolation polynomials in a fully parallel man-
ner, enabling the low-latency feature of the decoding. By
eliminating the redundant TEPs that produce non-binary
codeword candidates and identifying the ML candidate,
the LLOSD also yields a low decoding complexity.

• A concatenated interpretation is introduced for the

LLOSD. It is shown that its re-encoding can be realized
through concatenating parity-checker of a punctured BCH
code and a systematic encoder of a binary linear block
code. Such an interpretation can not only convert the
non-binary re-encoding operations into binary, but also
unveil that there are far fewer BCH codeword candidates
than the decoding TEPs. The latter vindicates the low-
complexity feature of LLOSD.

• A segmented variant of the LLOSD (SLLOSD) is also
proposed to further reduce the decoding complexity. It is
shown that by appropriately choosing decoding orders of
the codeword segments, near ML decoding performance
can be achieved. Our simulation results show the latency
and complexity of LLOSD can be further reduced.

• In order to decode long BCH codes, an HSD algorithm
is further proposed, which integrates the LLOSD and the
LCC-BR decoding. This research shows that the latter can
effectively provide extra TEPs for the LLOSD, enhancing
its decoding performance with a limited decoding order.
Note that both the LLOSD and the LCC-BR decoding
are formulated based on the RS code algebra. Their com-
putations share some common operations. Consequently,
the supplementary LCC-BR decoding only incurs limited
computational cost. Our simulation results indicate that
the HSD algorithm can efficiently handle long BCH codes
with rates ranging from 0.67 to 0.83. The HSD can
also outperform several state-of-the-art decoding for BCH
codes.

The rest of the paper is organized as follows. Section II
introduces the preliminaries for the paper. Section III presents
the LLOSD and its concatenated perspective. Section IV
presents the segmented variant of the LLOSD. Section V
further presents the HSD. Section VI analyzes their decoding
complexity. Finally, Section VII concludes the paper.

II. PRELIMINARIES

This section presents preliminaries of the paper, including
the subfield subcode relationship between BCH and RS codes,
and the OSD for BCH codes.

A. BCH Codes and RS Codes

Let F2 and F2m denote the binary field and its extension
field, respectively, where m is a positive integer. Let α denote
the primitive element of F2m . Let F2[x] and F2m [x] denote
the univariate polynomial rings defined over F2 and F2m ,
respectively. In our later introduction of HSD, the bivariate
polynomial ring F2m [x, y] will also be needed. A binary
primitive BCH code CBCH of length n = 2m−1 and designed
Hamming distance d = 2t + 1 is a cyclic code with the
generator polynomial g(x) ∈ F2[x] that satisfies

g(α) = g(α2) = · · · = g(α2t) = 0 (1)

and deg g(x) shall be the minimum. Let k denote dimension
of the BCH code. Given a message f = (f0, f1, ..., fk−1) ∈
Fk
2 , the (n, k) BCH codeword c = (c0, c1, ..., cn−1) can be

generated by
c(x) = f(x) g(x), (2)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3613748

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 26,2025 at 03:00:49 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INFORMATION THEORY, ACCEPTED 3

where c(x) = c0 + c1x + · · · + cn−1x
n−1 ∈ F2[x] and

f(x) = f0 + f1x+ · · ·+ fk−1x
k−1 ∈ F2[x] are the codeword

polynomial and message polynomial, respectively. For any
c ∈ CBCH, eqs. (1) and (2) imply that

c(α) = c(α2) = · · · = c(α2t) = 0. (3)

An (n, k′) RS code CRS defined over F2m can be con-
structed by evaluating its message polynomials over the
nonzero elements of F2m , i.e., F2m\{0}. Given a message
u = (u0, u1, ..., uk′−1) ∈ Fk′

2m , the (n, k′) RS codeword
v = (v0, v1, ..., vn−1) can be generated by

v = (u(1), u(α), ..., u(αn−1)), (4)

where u(x) = u0 + u1x + · · · + uk′−1x
k′−1 ∈ F2m [x] is the

message polynomial, and 1, α, . . . , αn−1 are the code locators
1. The codeword polynomial is v(x) = v0 + v1x + · · · +
vn−1x

n−1 ∈ F2m [x]. For any v ∈ CRS, it holds that

v(αi) = u(1) + u(α)αi + · · ·+ u(αn−1)(αi)n−1

=

k′−1∑
j=0

uj +

k′−1∑
j=0

ujα
j · αi

+ · · ·+
k′−1∑
j=0

uj(α
n−1)j · (αi)n−1

=

k′−1∑
j=0

uj (1 + αi+j + · · ·+ (αi+j)n−1)

(5)

For i = 1, 2, ..., n − k′ and j = 0, 1, ..., k′ − 1, αi+j 6= 1.
Hence, v(αi) =

∑k′−1
j=0 uj

1−αn(i+j)

1−αi+j . Since αn = α2m−1 = 1,

v(α) = v(α2) = · · · = v(αn−k′
) = 0. (6)

Moreover, it has a minimum Hamming distance of d′ =
n− k′+1. Hence, RS codes are maximum distance separable
(MDS) codes.

Now it is sufficient to show that BCH codes are the binary
subcodes of RS codes. For this, the subfield subcode definition
needs to be introduced.

Definition I ([30]). Given a linear code C ⊆ Fn
2m , its binary

subcode C′ is defined as C′ = C ∩ Fn
2 .

Lemma 1 ( [31]). Given a BCH code CBCH ⊆ Fn
2 with the

designed Hamming distance d and an RS code CRS ⊆ Fn
2m

with the minimum Hamming distance d′, if d = d′, the BCH
code is the binary subcode of the RS code, i.e., CBCH = CRS∩
Fn
2 .

Proof. If d = d′, n − k′ = 2t. For any BCH codeword
c ∈ CBCH, let us define a polynomial f ′(x) =

∑n−1
j=0 f ′

j x
j ∈

F2m [x] such that f ′
j = c(α−j). Then, for i = 0, 1, ..., n− 1,

f ′(αi) = c(1) + c(α−1)αi + · · ·+ c(α1−n)(αi)n−1

=

n−1∑
j=0

cj (1 + αi−j + · · ·+ (αi−j)n−1).

1Note that the codeword can be generated by evaluating the message
polynomial at the code locators in an arbitrary order. For presentation
convenience, this paper adopts the order shown in eq. (4).

Note that

1 + αi−j + · · ·+ (αi−j)n−1 =

{
1, if j = i;
1−αn(i−j)

1−αi−j = 0, otherwise.

Hence, f ′(αi) = ci for i = 0, 1, ..., n−1. Since α−j = αn−j ,
further based on eq. (3), c(α−j) = 0 for j = k′, k′+1, ..., n−1

and f ′(x) =
∑k′−1

j=0 f ′
j x

j . Furthermore, based on eq. (4), c ∈
CRS. Hence, CBCH ⊆ CRS ∩ Fn

2 .
For any binary RS codeword v ∈ CRS ∩ Fn

2 , v(x) ∈ F2[x]
and it satisfies eq. (6). Since g(x) is the minimal nonzero
polynomial in F2[x] that satisfies eq. (1), v(x)mod g(x) = 0.
Furthermore, based on eq. (2), v ∈ CBCH. Hence, CRS ∩Fn

2 ⊆
CBCH. Therefore, CBCH = CRS ∩ Fn

2 . ■
In the rest of this paper, let d = d′. Hence, the (n, k) BCH

code is the binary subcode of the (n, k′) RS code.
Remark 1. Since RS codes are MDS codes, the dimension

of RS codes is always greater than that of their BCH subcodes,
i.e., k′ > k. Moreover, based on the Plotkin bound [30],
binary BCH codes with dimension k ⩾ m have a minimum
distance of d ⩽ 2m−1 and their corresponding RS codes have
a dimension of k′ > n

2 .

B. OSD of BCH Codes

Assume that a BCH codeword c is transmitted by the
binary phase shift keying (BPSK) modulation as: 0 7→
1; 1 7→ −1. The modulated symbol sequence is X =
(X0,X1, . . . ,Xn−1) ∈ {−1, 1}n. After a memoryless channel,
the received symbol sequence is Y = (Y0,Y1, . . . ,Yn−1) ∈
Rn. Let Pr (Yj | cj = 0) and Pr (Yj | cj = 1) denote channel
transition probabilities of cj , its log-likelihood ratio (LLR) can
be determined by

Lj = ln
Pr(Yj | cj = 0)

Pr(Yj | cj = 1)
. (7)

Subsequently, the received LLR sequence can be obtained as
L = (L0, L1, . . . , Ln−1) ∈ Rn. The hard-decision received
word r = (r0, r1, . . . , rn−1) ∈ Fn

2 can be further obtained
based on rj = 0 if Lj > 0, or rj = 1 otherwise. Note that a
greater |Lj | indicates the received symbol rj is more reliable.
Hence, reliability of all received symbols can be sorted based
on |Lj |, resulting in a refreshed symbol index sequence
j0, j1, . . . , jn−1. It indicates |Lj0 | > |Lj1 | > · · · > |Ljn−1 |.
Let Λ(·) denote the permutation function that is a result of the
above sorting, the sorted received word is

Λ (r) =
(
rj0 , rj1 , . . . , rjn−1

)
. (8)

Applying the same permutation to the columns of the BCH
generator matrix G yields Λ(G). The systematic generator
matrix GBCH can be further obtained by performing the GE
on Λ(G), reducing the first k columns of Λ(G) into a k × k
identity submatrix. Note that if the first k columns of Λ(G)
are not linearly independent, a second permutation would be
needed so that an identity submatrix can be formed. In this
case, the sorted received word Λ(r) also needs to be updated
accordingly. Without further mentioning, we assume that the
first k columns of Λ(G) have been ensured with this property
through one or more permutations.
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After ensuring the first k columns of Λ(G) being linearly
independent, the first k positions in Λ(r) are called the MRIPs,
which are denoted as Υ = {j0, j1, . . . , jk−1}. In this paper,
given a vector z = (z0, z1, . . . , zn−1), we use z[J] to denote
the subvector of z with entries indexed by the set J . It is
called the support of z[J], and denoted as supp(z[J]). That
says supp(z[J]) = J . Consequently, the initial message can
be generated as

f = r[Υ]

=
(
rj0 , rj1 , . . . , rjk−1

)
,

(9)

where f ∈ Fk
2 . Let e(ω) = (e

(ω)
0 , e

(ω)
1 , . . . , e

(ω)
n−1) ∈ Fn

2 denote
an error pattern of length n. The OSD TEPs are the subvector
of e(ω) defined by the MRIPs, which are written as e

(ω)
[Υ] =

(e
(ω)
j0

, e
(ω)
j1

, . . . , e
(ω)
jk−1

) ∈ Fk
2 . They are utilized to update f ,

yielding the test messages. The OSD is parameterized by its
order τ that can be interpreted as the maximum Hamming
weight of the TEPs. Let wt(·) denote the Hamming weight
function. It follows that wt(e(ω)

[Υ] ) ≤ τ . Hence, with a decoding
order τ , ω = 0, 1, . . . , NTEPs − 1 and NTEPs =

∑τ
ρ=0

(
k
ρ

)
is

the number of TEPs. With a TEP e(ω), the test message is
generated by

f (ω) = f + e
(ω)
[Υ] . (10)

The BCH codeword ĉ(ω) = (ĉ
(ω)
0 , ĉ

(ω)
1 , . . . , ĉ

(ω)
n−1) ∈ Fn

2 can
be further generated by

ĉ(ω) = Λ−1(f (ω) ·GBCH), (11)

where Λ−1(·) is inverse of the permutation function Λ(·).
It can be seen that an OSD with order τ produces NBCH =

NTEPs =
∑τ

ρ=0

(
k
ρ

)
codeword candidates, exhibiting a de-

coding complexity of O(kτ ). With the LLR sequence L, the
correlation distance between r and ĉ(ω) is defined as

D(r, ĉ(ω)) ≜
∑

j:rj ̸=ĉ
(ω)
j

|Lj | . (12)

A codeword candidate that yields a smaller correlation distance
to r is more likely to be the transmitted codeword. Meanwhile,
the OSD can be facilitated by identifying a codeword that
satisfies the ML criterion [8] as below. Let Sω = {Lj |rj =

ĉ
(ω)
j }, and its entries can be reordered as

|Lξ0 | ≤ |Lξ1 | ≤ · · · ≤ |Lξn−dω−1
|, (13)

where dω denotes the Hamming distance between r and ĉ(ω).
If the estimated codeword ĉ(ω) satisfies [8]

D(r, ĉ(ω)) ≤
d−dω−1∑

j=0

|Lξj |, (14)

it is the ML codeword. Once an ML codeword is identified, the
decoding can be terminated. Otherwise, among the OSD out-
put list, the one that yields the minimum correlation distance
to r will be selected as ĉopt.

The above description shows that the GE produces the
systematic generator matrix GBCH based on the MRIPs. It is
indispensable for generating the codeword candidates. How-

ever, its sequential feature incurs an uncompromised decoding
latency.

III. THE LLOSD ALGORITHM

This section presents the LLOSD algorithm, in which the
BCH codeword candidates are produced by using the RS
systematic generator matrix. We first show the construction
of this matrix, which exhibits a full parallelism, underpinning
the low-latency feature of the proposed decoding. Afterwards,
the concatenated interpretation of the LLOSD is introduced,
also unveiling its low complexity features.

A. Construction of RS Systematic Generator Matrix

Given the sorted received word Λ (r) of eq. (8), its MRPs
are denoted by Θ = {j0, j1, . . . , jk′−1}. Its complementary
set is Θc = {jk′ , jk′+1, . . . , jn−1}. The MDS property of
RS codes ensures any k′ columns of its generator matrix
are linearly independent. With Θ, the initial message can be
formed as

u = r[Θ]

= (rj0 , rj1 , . . . , rjk′−1
),

(15)

where u ∈ Fk′

2 and supp(u) = Θ = {j0, j1, . . . , jk′−1}.
Subsequently, the systematic re-encoding message polynomial
is defined as

Hu(x) =
∑

j∈supp(u)

rjTj(x), (16)

where

Tj(x) =
∏

j′∈supp(u),j′ ̸=j

x− αj′

αj − αj′
(17)

is the Lagrange interpolation polynomial w.r.t. code locator
αj . Note that for any j ∈ supp(u), it enables Tj(α

j) = 1,
and Tj(α

j′) = 0 where j′ 6= j. With the code loca-
tors 1, α, . . . , αn−1, the systematic RS codeword v = (v0,
v1, . . . , vn−1) ∈ Fn

2m can be generated by

v = (Hu(1),Hu(α), . . . , Hu(α
n−1)), (18)

where Hu(α
j) = rj , ∀j ∈ supp(u). They are the message

symbols in v, while the remaining symbols indexed by Θc

are the parity symbols.
In order to construct the RS systematic generator matrix,

let us first define k′ weight-1 messages as uj0
= (1, 0, . . . , 0),

uj1
= (0, 1, . . . , 0), . . . , ujk′−1

= (0, 0, . . . , 1), respec-
tively. They have the same support as u, i.e., supp(uj0

) =
supp(uj1

) = · · · = supp(ujk′−1
) = supp(u) = Θ. Conse-

quently, a systematic generator matrix of the (n, k′) RS code
can be defined as

GRS =


Huj0

(1) Huj0
(α) · · · Huj0

(αn−1)

Huj1
(1) Huj1

(α) · · · Huj1
(αn−1)

...
...

. . .
...

Huj
k′−1

(1) Huj
k′−1

(α) · · · Huj
k′−1

(αn−1)

 ,

(19)
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where GRS ∈ Fk′×n
2m and each row of GRS is a systematic RS

codeword. They correspond to messages uj0
, uj1

, . . . , ujk′−1
,

respectively. Since the k′ messages are linearly independent,
so are the k′ codewords. Meanwhile, columns j0, j1, . . . , jk′−1

form a k′ × k′ identity submatrix. With uj0
,uj1

, . . . ,ujk′−1
,

entries of GRS can be computed as

Hui
(αj) =


0, if j ∈ Θ, j 6= i;

1, if j ∈ Θ, j = i;

Ti

(
αj
)
, if j ∈ Θc,

(20)

where

Ti

(
αj
)
=

∏
j′∈Θ,j′ ̸=i

αj − αj′

αi − αj′

=

∏
j′∈Θ

(
αj − αj′

)
(αj − αi)

∏
j′∈Θ,j′ ̸=i (α

i − αj′)
.

(21)

Since
∏n−1

j=0 (x− αj) = xn − 1 and −1 = 1 in F2m , we have

αj
n−1∏

j′=0,j′ ̸=j

(
αj − αj′

)
=

n−1∏
j=0

αj

=

n−1∏
j=0

(0− αj)

= 1.

(22)

Eq. (21) can also be written as

Ti

(
αj
)
=

αi
∏

j′∈Θc

(
αi − αj′

)
αj (αj − αi)

∏
j′∈Θc,j′ ̸=j (α

j − αj′)
. (23)

Remark 1 shows that the RS codes considered in this work
would have a dimension k′ > n

2 . Hence, |Θc| < |Θ|. Comput-
ing the GRS entries using eq. (23) requires less F2m operations
than using eq. (21). Meanwhile, only the k′× (n− k′) entries
with j ∈ Θc need to be computed. This computation can be
performed in a fully parallel manner, which yields the low-
latency feature for the LLOSD.

B. Generation of BCH Codeword Candidates
After determining the RS systematic generator matrix GRS,

BCH codeword candidates can be further generated through
GRS. With the initial message u, an initial estimated RS
codeword v̂(0) = (v̂

(0)
0 , v̂

(0)
1 , . . . , v̂

(0)
n−1) ∈ Fn

2m can be
generated by

v̂(0) = u ·GRS. (24)

The systematic feature of GRS enables v̂
(0)
j = rj , ∀j ∈ Θ.

The LLOSD TEPs can be further defined as

e
(ω)
[Θ] = (e

(ω)
j0

, e
(ω)
j1

, . . . , e
(ω)
jk′−1

) ∈ Fk′

2 . (25)

Again, with a decoding order τ , ω = 0, 1, . . . , NTEPs − 1 and
NTEPs =

∑τ
ρ=0

(
k′

ρ

)
. Subsequently, the test messages u(ω) can

be generated by
u(ω) = u+ e

(ω)
[Θ] . (26)

Note that eqs. (15) and (25) ensure that u(ω) ∈ Fk′

2 . RS
codeword candidates v̂(ω) = (v̂

(ω)
0 , v̂

(ω)
1 , . . . , v̂

(ω)
n−1) ∈ Fn

2m

Algorithm 1 The LLOSD Algorithm
Require: Y , τ ;
Ensure: v̂opt;

1: Compute the LLRs as in eq. (7), and determine r;
2: Define the MRPs, u, and let Dmin = +∞;
3: Generate GRS as in eqs. (20), (21) or (23);
4: Generate the initial codeword v̂(0) as in eq. (24);
5: For each TEP e

(ω)
[Θ] , do

6: Test if the codeword v̂(ω) is binary as in eq. (28);
7: If v̂(ω) is binary
8: Determine D(r, v̂(ω)) as in eq. (12);
9: If D(r, v̂(ω)) < Dmin

10: Update Dmin = D(r, v̂(ω)) and v̂opt = v̂(ω);
11: If v̂(ω) satisfies the ML criterion as in eq. (14);

12: Terminate the decoding;
13: End for
14: Return v̂opt;

can be further generated by

v̂(ω) = u(ω) ·GRS

= v̂(0) + e
(ω)
[Θ] ·GRS,

(27)

Based on Lemma 1, if v̂(ω) ∈ Fn
2 , it is also an (n, k) BCH

codeword candidate. This binary property can be effectively
assessed by the following theorem.

Theorem 2. During the re-encoding of eq. (27), for j ∈ Θc,
if there exists v̂

(0)
j +

∑
i∈Θ,e

(ω)
i ̸=0

Hui
(αj) /∈ F2, v̂(ω) is not

a BCH codeword.
Proof. Since u(ω) ∈ Fk′

2 , codeword symbols v̂
(ω)
j ∈ F2 ,

∀j ∈ Θ. For the remaining symbols that are indexed in Θc,
we have

v̂
(ω)
j = v̂

(0)
j +

∑
i∈Θ,e

(ω)
i ̸=0

Hui
(αj). (28)

If they are also binary, v̂(ω) ∈ Fn
2 . Based on Lemma 1, it is a

BCH codeword. Otherwise, codeword v̂(ω) will be discarded
as an invalid codeword candidate. ■

Note that with the assessment of Theorem 2, the proposed
LLOSD can eliminate an invalid BCH codeword candidate
once a codeword symbol generated by eq. (28) is non-binary.
Subsequently, the following re-encoding can be skipped. This
assessment can eliminate the redundant re-encoding if they are
not yielding a BCH codeword. Our later analysis of Section
III-C and numerical results of Section III-D will show that
the number of BCH codeword candidates is far fewer than
NTEPs. Further incorporating with the decoding termination
introduced in II-B, OSD requires fewer amount of F2m op-
erations than that of F2 operations required by the OSD.
Therefore, Theorem 2 can effectively facilitate the LLOSD.
Meanwhile, in Section IV, a TEP segmentation approach will
also be introduced to further facilitate the LLOSD.

With an LLOSD output list denoted as {v̂} which contains
NBCH codeword candidates, the correlation distance between
r and the BCH codeword candidate v̂(ω) will be further
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Fig. 1. Concatenated perspective of the LLOSD.

determined as in eq. (12). The one that yields the minimum
correlation distance with r will be selected as v̂opt. Mean-
while, the decoding can be facilitated by identifying the ML
codeword. Once a codeword candidate v̂(ω) satisfies the ML
criterion [8], it will be selected as the decoding output v̂opt
and decoding terminates. Summarizing the above description,
the LLOSD algorithm is presented below as in Algorithm 1.

C. The Concatenated Perspective

This subsection provides another perspective onto the re-
encoding of LLOSD. It can be re-interpreted as a concate-
nation between the parity-checker of a punctured BCH code
and the systematic encoder of a binary linear block code.
This concatenated perspective not only converts the non-binary
re-encoding operations into binary, but also unveils why the
LLOSD generates far fewer BCH codeword candidates than
the number of decoding TEPs (as shown in Fig. 2), verifying
its low-complexity feature.

Given the systematic generator matrix GRS of the (n, k′) RS
code, its systematic parity-check matrix HRS can be obtained
based on GRS ·HT

RS = 0, where 0 is an all zero matrix. Entries
of HRS are defined as

hi,j =


0, if j ∈ Θc, j 6= jk′+i;

1, if j ∈ Θc, j = jk′+i;

Tj(α
jk′+i), if j ∈ Θ,

(29)

where i = 0, 1, ..., n−k′−1 and j = 0, 1, ..., n−1. Since the
entries hi,j ∈ F2m , they can be represented as a vector in Fm

2

through

hi,j = h
(0)
i,j + h

(1)
i,j α+ · · ·+ h

(m−1)
i,j αm−1

= (1, α, ..., αm−1) · (h(0)
i,j , h

(1)
i,j , ..., h

(m−1)
i,j )T,

(30)

where h
(0)
i,j , h

(1)
i,j , ..., h

(m−1)
i,j ∈ F2. Based on Lemma 1, HRS

is also a parity-check matrix of the (n, k) BCH code. By
representing the entries of HRS as column vectors over F2,
an m(n − k′) × n binary parity-check matrix HBCH for the
BCH code can be obtained as

HBCH =



h
(0)
0,0 h

(0)
0,1 ... h

(0)
0,n−1

...
...

. . .
...

h
(m−1)
0,0 h

(m−1)
0,1 ... h

(m−1)
0,n−1

h
(0)
1,0 h

(0)
1,1 ... h

(0)
1,n−1

...
...

. . .
...

h
(m−1)
1,0 h

(m−1)
1,1 ... h

(m−1)
1,n−1

...
...

. . .
...

h
(0)

n−k′−1,0
h
(0)

n−k′−1,1
... h

(0)

n−k′−1,n−1

...
...

. . .
...

h
(m−1)

n−k′−1,0
h
(m−1)

n−k′−1,1
... h

(m−1)

n−k′−1,n−1



. (31)

Note that

Λ(HRS) =


h0,j0 h0,j1 ... h0,j

k′−1
1 0 ... 0

h1,j0
h1,j1

... h1,j
k′−1

0 1 ... 0

...
...

. . .
...

...
...

. . .
...

hn−k′−1,j0
hn−k′−1,j1

... hn−k′−1,j
k′−1

0 0 ... 1

 .

(32)
In conjunction with 1 = (1, α, ..., αm−1) · (1, 0, ..., 0)T and
0 = (1, α, ..., αm−1) · (0, 0, ..., 0)T, as in (33), shown at the
bottom of the page. Rows of Λ(HBCH) are further permuted
such that an (n − k′) × (n − k′) identity submatrix In−k′

appears in its top right corner as in (34), shown at the bottom
of the page, where P0 and P1 are the (n − k′) × k′ and
(m − 1)(n − k′) × k′ submatrices, respectively. Therefore, it
can be seen that any vector r ∈ Fn

2 is a BCH codeword if and
only if

Λ(r) · [P0 In−k′ ]T = 0, (35)

and
Λ(r) · [P1 0]T = 0. (36)

They imply r[Θ] ·PT
0 = r[Θc] and r[Θ] ·PT

1 = 0, respectively.
Let CΘc

BCH denote the punctured BCH code that is obtained
by puncturing symbols of the (n, k) BCH codeword at the
positions of Θc, i.e.,

CΘc

BCH = {c[Θ] = (cj0 , cj1 , ..., cjk′−1
) | c ∈ CBCH}. (37)

The following Theorem 3 reveals that P1 is a parity-check
matrix of CΘc

BCH.

Theorem 3. The matrix P1 defined in eq. (34) is a parity-
check matrix of the (k′, k) punctured BCH code CΘc

BCH.

Proof. For any codeword c ∈ CBCH, it satisfies eq. (36),
i.e., c[Θ] ·PT

1 = 0. Based on eq. (37), any codeword c̃ ∈ CΘc

BCH

satisfies c̃ ·PT
1 = 0. On the other hand, for any vector a ∈ Fk′

2

such that a · PT
1 = 0, let c = Λ−1(a · [Ik′ PT

0 ]). It can be
verified that c satisfies both eqs. (35) and (36), which implies
c ∈ CBCH. Since a = c[Θ], based on eq. (37), a ∈ CΘc

BCH.
Therefore, for any vector a ∈ Fk′

2 , a ∈ CΘc

BCH if and only if
a ·PT

1 = 0, i.e., P1 is a parity-check matrix of the punctured
BCH code CΘc

BCH.

Furthermore, since the ranks of HBCH and [P0 In−k′ ] are
n−k and n−k′, respectively, the rank of P1 is n−k− (n−
k′) = k′ − k. Hence, the punctured BCH code CΘc

BCH has a
dimension of k. ■

Based on eqs. (35), (36) and Theorem 3, re-encoding of
LLOSD can be reformulated as the follows. Given a test
message u(ω) ∈ Fk′

2 , if it is a punctured BCH codeword, i.e.,

u(ω) ·PT
1 = 0, (38)
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Λ(HBCH) =



h
(0)
0,j0

h
(0)
0,j1

. . . h
(0)
0,jk′−1

1 0 . . . 0
...

...
. . .

...
...

...
. . .

...
h
(m−1)
0,j0

h
(m−1)
0,j1

. . . h
(m−1)
0,jk′−1

0 0 . . . 0

h
(0)
1,j0

h
(0)
1,j1

. . . h
(0)
1,jk′−1

0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
h
(m−1)
1,j0

h
(m−1)
1,j1

. . . h
(m−1)
1,jk′−1

0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
h
(0)
n−k′−1,j0

h
(0)
n−k′−1,j1

. . . h
(0)
n−k′−1,jk′−1

0 0 . . . 1

...
...

. . .
...

...
...

. . .
...

h
(m−1)
n−k′−1,j0

h
(m−1)
n−k′−1,j1

. . . h
(m−1)
n−k′−1,jk′−1

0 0 . . . 0



(33)

Λ(H′
BCH) =



h
(0)
0,j0

h
(0)
0,j1

. . . h
(0)
0,jk′−1

1 0 . . . 0

h
(0)
1,j0

h
(0)
1,j1

. . . h
(0)
1,jk′−1

0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
h
(0)
n−k′−1,j0

h
(0)
n−k′−1,j1

. . . h
(0)
n−k′−1,jk′−1

0 0 . . . 1

h
(1)
0,j0

h
(1)
0,j1

. . . h
(1)
0,jk′−1

0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
h
(m−1)
n−k′−1,j0

h
(m−1)
n−k′−1,j1

. . . h
(m−1)
n−k′−1,jk′−1

0 0 . . . 0


=

[
P0 In−k′

P1 0

]
(34)

a BCH codeword candidate can be generated by

ĉ(ω) = Λ−1(u(ω) · [Ik′ PT
0 ])

= Λ−1(u(ω),u(ω) ·PT
0 ).

(39)

Therefore, the LLOSD re-encoding can be equivalently real-
ized through the concatenation between a parity-checker of
CΘc

BCH and an encoder of the (n, k′) systematic binary code.
The latter is defined by the generator matrix Λ−1([Ik′ PT

0 ]).
Fig. 1 illustrates this concatenated perspective for the LLOSD.

This concatenated perspective further converts the non-
binary re-encoding operations into the binary, resulting in
the LLOSD re-encoding being more friendly for hardware
implementation. Our numerical results will verify that this con-
catenated realization of the LLOSD can substantially reduce
the decoding latency. Moreover, based on eq. (26), the parity-
check equation of (38) can be rewritten as

(u+ e
(ω)
[Θ] ) ·P

T
1 = 0

⇔ u ·PT
1 + e

(ω)
[Θ] ·P

T
1 = 0

⇔ s+ e
(ω)
[Θ] ·P

T
1 = 0

⇔ e
(ω)
[Θ] ·P

T
1 = s, (40)

where s = u · PT
1 is the syndrome vector. Hence, by pre-

computing the syndrome vector s of the initial message u, the
parity-check computation of eq. (38) can be simplified into eq.

(40). Note that P1 can be further reduced by GE, resulting in
an (k′ − k) × k′ matrix. However, applying GE contradicts
the primary aim of this work. In practice, using a reduced P1

does not significantly improve efficiency of the above parity-
check computation, since the computation can be terminated
once a check imposed by P1 is violated. This often happens
after checking the first few rows of P1.

Furthermore, it can also be seen that among all TEPs, only
those that can produce a (k′, k) punctured BCH codeword
through eq. (26) are able to further yield an (n, k) BCH code-
word candidate. This implies that the LLOSD will generate
fewer BCH codeword candidates than the decoding TEPs.
Based on eq. (40), a TEP e

(ω)
[Θ] can produce a punctured BCH

codeword if and only if e
(ω)
[Θ] is an element of the following

coset of CΘc

BCH

u+ CΘc

BCH := {u+ c̃ | c̃ ∈ CΘc

BCH}. (41)

Let Aρ(·) denote the number of weight-ρ codewords in a coset
(code). For an order-τ LLOSD, since the TEPs consist of all
vectors in Fk′

2 with a weight at most τ , the number of BCH
codeword candidates is

NBCH =

τ∑
ρ=0

Aρ(u+ CΘc

BCH). (42)

Note that if τ is less than the minimum weight of the coset
u + CΘc

BCH, NBCH = 0. Since this minimum weight varies
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Fig. 2. Number of BCH codeword candidates.

with the channel conditions, the LLOSD does not guarantee
the delivery of a valid codeword. Our research shows that
when the received information is only mildly corrupted, it
frequently occurs that u = c∗[Θ], where c∗ ∈ CBCH denotes the
transmitted codeword. In this case, NBCH =

∑τ
ρ=0 Aρ(CΘc

BCH).
It is much smaller than NTEPs, where NTEPs =

∑τ
ρ=0

(
k′

ρ

)
.

Fig. 2 shows our numerical results on the number of
BCH codeword candidates NBCH generated by the LLOSD.
In this paper, our numerical results are obtained over the
additive white Gaussian noise (AWGN) channel using BPSK
modulation. The signal-to-noise ratio (SNR) is measured as
Eb/N0, where Eb is the power per information bit and N0

is the single side-band power spectrum density of the noise.
The theoretical results are the average of

∑τ
ρ=0 Aρ(CΘc

BCH) that
are obtained in 10, 000 trials of randomly puncturing n − k′

positions of the BCH code CBCH. It can be seen that in both
the LLOSD of the (63, 45) BCH code with τ = 3 and the
(31, 21) BCH code with τ = 2, NBCH converges to the
theoretical estimations of five and three, respectively. Note
that NTEPs are 30914 and 379 for the two LLOSD scenarios,
respectively.

D. Decoding Performances

Figs. 3 and 4 show the decoding frame error rate (FER)
of the (31, 21) and the (63, 45) BCH codes, respectively.
They are binary subcodes of the (31, 27) and the (63, 57)
RS codes. Performances of the BM decoding [20], the OSD
[5], and ML decoding [37] are also presented as benchmarks.

Based on the above subsection, non-binary re-encoding
operations of the LLOSD can be simplified to binary ones.
This simplified LLOSD is denoted as LLOSD-B. It exhibits
the same decoding performance as the LLOSD, but results
in less finite field operations and a smaller decoding latency.
Our simulation results show that the LLOSD performance can
approach that of the OSD, but requiring a larger decoding
order. E.g., for the (63, 45) BCH code, the LLOSD (3)
performs the same as the OSD (1). This is due to the LLOSD
functions under the RS paradigm, where its TEPs have a
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Fig. 3. Performance of the (31, 21) BCH code.
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Fig. 4. Performance of the (63, 45) BCH code.

greater dimension than that of the OSD. Hence, to achieve the
same decoding performance, the LLOSD inevitably exhibits
a larger worst case (when all test messages are re-encoded)
decoding complexity. However, in practice, early termination
is usually applied. The decoding is terminated once a desired
codeword is found, e.g., the one that satisfies the ML criterion
of eq. (14). In this case, the LLOSD can show its complexity
and latency advantages over the OSD and its enhanced vari-
ants. Please also note that Section III-C shows NBCH is far
smaller than NTEP. Most of the re-encoding computation can
be filtered, especially by the LLOSD-B.

To further verify the analysis, Table I-A also shows our
numerical results on the decoding complexity for the (63, 45)
BCH code. The decoding will be terminated once a codeword
that satisfies eq. (14) is produced. As the SNR increases,
the complexity of the OSD, the LLOSD and the LLOSD-B
reduce since the ML codeword can be produced earlier. It
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TABLE I
NUMERICAL RESULTS IN DECODING THE (63, 45) BCH CODE

A. Decoding Complexity.

Algorithms Eb/N0 Complexity
(dB) F2 oper. F64 oper. Floating oper.

OSD (1)
4 2.78× 104 81
5 2.60× 104 19
6 2.56× 104 8

LLOSD (3)
4 1.81× 104 15
5 5.21× 103 8
6 2.58× 103 7

LLOSD-B (3)
4 3.13× 104 15
5 6.17× 103 1.77× 103 8
6 1.56× 103 7

B. Decoding Latency.

Algorithms Eb/N0 Latency
(dB) (µs)

OSD (1)
4 6.58× 102

5 5.34× 102

6 5.06× 102

LLOSD (3)
4 1.99× 103

5 4.36× 102

6 1.32× 102

LLOSD-B (3)
4 1.13× 103

5 2.04× 102

6 8.46× 101

can be observed that with similar decoding performances, the
amount of F64 operations required by the LLOSD (3) can
be reduced to only a fifth of F2 operations required by the
OSD (1). Our analysis in Section III-C shows the number of
BCH codeword candidates is far fewer than NTEPs. Hence,
the re-encoding skipping rule in Theorem 2 can effectively
reduce the LLOSD complexity. It also subsequently results in
fewer floating-point operations that are required in calculating
the correlation distance of eq. (14). In the LLOSD-B, the
amount of F64 operations is unrelated to the SNR, as the F64

operations are only attributed to the calculation of GRS. In
comparison with the OSD (1), the LLOSD-B (3) also requires
fewer F2 operations as the SNR increases.

To evaluate the decoding latency of the proposed algo-
rithms, all simulations in this paper are conducted using the
Intel core i7-10710U CPU. It is measured as the average time
in decoding a codeword. In all algorithms, the TEPs are pro-
cessed sequentially. This provides a supplementary reference
for assessing the decoding latency difference among the three
algorithms. Table I-B compares the decoding latency of OSD
(1), LLOSD (3), and LLOSD-B (3). Note that we assume in
the LLOSD and the LLOSD-B, rows of GRS are generated
in parallel. It shows that both the LLOSD and LLOSD-B can
significantly reduce the decoding latency over the OSD. This
is primarily due to both the LLOSD and LLOSD-B are free
from conducting GE.

IV. THE SEGMENTED VARIANT

The LLOSD generates BCH codeword candidates using
the RS systematic generator (or parity-check) matrix that is
obtained by the use of Lagrange interpolation polynomials.
Computation of the matrix entries can be performed in a fully
parallel manner, removing the latency-orienting GE in the con-
ventional OSD. However, as Remark 1 points out, an RS code
has a greater dimension than its BCH subcode. Consequently,
the k′ MRPs of Θ may contain more errors than the k MRIPs
of Υ. The LLOSD requires a higher order to achieve the
same decoding performance as the conventional OSD, which
can be observed from our simulation results in Section III-D.
Although the complexity of the LLOSD re-encoding has been
reduced by discarding the non-binary codeword candidates
(or equivalently the test messages that fail the parity-check

of the punctured BCH code), decoding complexity can be
further reduced through reducing the number of TEPs. This
section proposes a segmented variant of the LLOSD, denoted
as the SLLOSD. It partitions the TEP into two segments that
correspond to Υ and Θ\Υ, respectively. They are enumerated
separately to generate the TEPs, reducing the number of TEPs.

A. TEP Segmentation

This research shows that for the LLOSD to yield a per-
formance close to that of the OSD (τ), it is unnecessary to
utilize TEPs with a Hamming weight greater than τ over the k
MRIPs (as denoted by Υ). Hence, we partition the MRPs (Θ)
into Υ and Θ\Υ. The TEPs can be generated by enumerating
error patterns over Υ and Θ\Υ separately. To match order-τ
OSD, the TEPs only need to maintain a maximum weight of
τ over Υ. For the weight-ρ TEPs over Υ, we assign an order
θρ to the TEP over the complementary positions in Θ\Υ. That
says they have a maximum weight of θρ over Θ\Υ. Thereby,
the number of TEPs can be significantly reduced.

Let θ0, θ1, ..., θτ be a series of orders that are assigned to the
k′ − k complementary positions of Θ\Υ. For ρ = 0, 1, ..., τ ,
the particular sets of TEPs can be defined as

Eρ(θρ) = {e = (e1, e2, ..., en) ∈ Fn
2 | wt(e[Υ]) = ρ,

wt(e[Θ\Υ]) ⩽ θρ, e[Θc] = 0}.
(43)

Each Eρ(θρ) contains the TEPs with an exact weight of ρ over
Υ and a maximum weight of θρ over Θ\Υ, where |Eρ(θρ)| =(
k
ρ

)∑θρ
ρ′=0

(
k′−k
ρ′

)
TEPs. Furthermore, let

E(θ0, θ1, ..., θτ ) = E0(θ0) ∪ E1(θ1) ∪ · · · ∪ Eτ (θτ ) (44)

be the set of all TEPs that are processed by the SLLOSD.
The algorithm can be parameterized by (θ0, θ1, ..., θτ ), and
denoted as SLLOSD (θ0, θ1, ..., θτ ). The number of TEPs is

NTEPs = |E(θ0, θ1, ..., θτ )|

=

τ∑
ρ=0

|Eρ(θρ)|

=

τ∑
ρ=0

(
k

ρ

) θρ∑
ρ′=0

(
k′ − k

ρ′

)
.

(45)
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The following example illustrates how the SLLOSD can
further reduce the number of TEPs required by the LLOSD.

Example 1. Let us consider decoding the (63, 45) BCH
code with performances shown in Fig. 4. Applying the afore-
mentioned TEP segmentation, the LLOSD (3) can be ex-
pressed as the SLLOSD (3, 2, 1, 0), where NTEPs = 30914.
Since both the OSD (1) and the LLOSD (3) can approach
near ML performance, it is reasonable to set expect that the
SLLOSD (3, 2) can approximate the LLOSD (3), reducing
NTEPs to 3854. Our later discussion will show such a reduction
does not degrade the decoding performance.

If the actual error pattern is included in E(θ0, θ1, ..., θτ ),
the transmitted codeword will be in the SLLOSD output
list. Let Pe,SLLOSD(θ0, θ1, ..., θτ ) and Pe,ML denote the error
probabilities of the SLLOSD (θ0, θ1, ..., θτ ) and the ML
decoding, respectively. Further, let Plist(θ0, θ1, ..., θτ ) denote
the probability that the transmitted codeword is not included
in the SLLOSD (θ0, θ1, ..., θτ ) output list. The SLLOSD
(θ0, θ1, ..., θτ ) error probability is upper bounded by

Pe,SLLOSD(θ0, θ1, ..., θτ ) ⩽ Pe,ML + Plist(θ0, θ1, ..., θτ ). (46)

Let εΥ and εΘ\Υ further denote the numbers of errors
locating at the positions of Υ and Θ\Υ, respectively. In a
memoryless channel, it can be assumed that εΥ and εΘ\Υ are
independent [7]. Hence, Plist(θ0, θ1, ..., θτ ) can be character-
ized as
Plist(θ0, θ1, ..., θτ )

=

τ∑
ρ=0

Pr(εΥ = ρ, εΘ\Υ > θρ) + Pr(εΥ > τ)

=

τ∑
ρ=0

Pr(εΘ\Υ > θρ | εΥ = ρ) Pr(εΥ = ρ) + Pr(εΥ > τ)

=

τ∑
ρ=0

Pr(εΘ\Υ > θρ) Pr(εΥ = ρ) + Pr(εΥ > τ).

(47)
Based on the performance of Section V.E in [5], if τ ⩾
min {dd/4− 1e , k}, asymptotically Pr(εΥ > τ) < Pe,ML

2. If
θ0, θ1, ..., θτ are sufficiently large such that Pr(εΘ\Υ > θρ) <
Pe,ML holds for all ρ = 0, 1, ..., τ ,

Plist(θ0, θ1, ..., θτ ) <

τ∑
ρ=0

Pe,ML · Pr(εΥ = ρ) + Pe,ML

< 2Pe,ML.

(48)

Therefore, if the orders θ0, θ1, ..., θτ are sufficiently large, the
SLLOSD can also achieve a near ML decoding performance
if τ ⩾ min {dd/4− 1e , k}. However, we still cannot develop
the theoretical criterion for selecting the orders θ0, θ1, ..., θτ .
They can only be determined empirically, aiming to yield a
good performance-complexity tradeoff.

B. Decoding Performances
Fig. 5 shows the decoding performance of the (63, 45)

BCH code. It can be seen that the SLLOSD (3, 2) per-

2In this paper, the asymptoticity refers to the channel SNR approaches
infinity
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Fig. 5. Performance of the (63, 45) BCH code.

forms similarly as the LLOSD (3). Furthermore, we compare
the performance of both the LLOSD and SLLOSD with
other state-of-the-art OSD improvements that also aim to
reduce the GE computational burden. They include the Yue-
Shirvanimoghaddam-Vucetic-Li (YSVL) OSD [17] and the
Choi-Jeong (CJ) OSD [16], in which their decoding order are
set to one. Moreover, the CJ OSD utilizes three permuted
generator matrices that are computed offline, each with a
predefined decoding order of one. It can be seen that the
performance of the YSVL OSD (1) can closely approach that
of the OSD (1), while the performance of the CJ OSD (1)
becomes inferior to that of the OSD (1) as the SNR increases.

Table II shows our numerical results of the decoding
complexity and latency for the BCH code. Both the LLOSD
and the SLLOSD are functioning in the concatenated manner
introduced in Section III-C, and the facilitated SLLOSD is
denoted as SLLOSD-B. It can be seen that the SLLOSD-
B (3, 2) requires fewer F2 operations and floating-point
operations than the LLOSD-B (3). Note that the LLOSD-
B (3) processes at most 30914 TEPs, while the SLLOSD-
B (3, 2) processes at most 3854 TEPs. This verifies the
proposed TEP segmentation strategy. In comparison with the
YSVL OSD and the CJ OSD, they require an identical level of
non-binary operations for computing GRS. Note that both the
YSVL OSD and the CJ OSD require fewer F2 operations than
the conventional OSD which requires approximately 2.5×104

F2 operations. However, the YSVL OSD necessitates the
calculation of probabilities that are needed for determining
whether the GE can be skipped, triggering a substantial
amount of floating-point operations. It can be observed that
the SLLOSD-B (3, 2) requires far fewer binary operations
and floating-point operations than the YSVL OSD (1). At SNR
of 6 dB, the SLLOSD-B (3, 2) requires more F2 operations
than the CJ OSD (1), due to the latter can bypass the GE
in most decoding events. However, the SLLOSD-B (3, 2)
outperforms the CJ OSD (1) as demonstrated by Fig. 5. Table
II-B also demonstrates that the SLLOSD-B (3, 2) can reduce
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TABLE II
NUMERICAL RESULTS IN DECODING THE (63, 45) BCH CODE

A. Decoding Complexity.

Algorithms Eb/N0 Complexity
(dB) F2 oper. F64 oper. Floating oper.

LLOSD-B (3)
4 3.13× 104 15
5 6.17× 103 1.77× 103 8
6 1.56× 103 7

SLLOSD-B (3, 2)
4 5.19× 103 8
5 1.82× 103 1.77× 103 7
6 1.20× 103 7

YSVL OSD (1)
4 2.43× 104 446
5 2.41× 104 385
6 2.24× 104 386

CJ OSD (1)
4 8.75× 103 67
5 3.37× 103 12
6 1.14× 103 1

B. Decoding Latency.

Algorithms Eb/N0 Latency
(dB) (µs)

LLOSD-B (3)
4 1.13× 103

5 2.04× 102

6 8.46× 101

SLLOSD-B (3, 2)
4 4.92× 102

5 8.60× 101

6 5.56× 101

YSVL OSD (1)
4 3.57× 102

5 3.06× 102

6 2.85× 102

CJ OSD (1)
4 2.85× 102

5 1.13× 102

6 5.44× 101

TEPs Re-encoding

LLOSD

ML
Yes

TEPs

No

Interp. TVs Form. & Skipping & Transf.

LCC-BR Decoding

Root-Fd.

Terminate

, and

Fig. 6. Block diagram of the HSD.

the decoding latency over that of the LLOSD-B (3), especially
in the low SNR regime. Again, this thanks to fewer TEPs are
processed by the SLLOSD-B (3, 2). It also exhibits a latency
advantage over the YSVL OSD (1) and the CJ OSD (1).

V. THE HSD ALGORITHM

This section further proposes the HSD, which integrates the
LLOSD and the LCC-BR decoding. The latter provides extra
TEPs for the LLOSD, enhancing its decoding performance
with a limited order. Since both the LLOSD and the LCC-BR
decoding are designed based on RS code algebra, they share
substantial common computations. The HSD only incurs a
limited amount of extra computation over the LLOSD, making
it particularly suitable for decoding longer BCH codes.

A. Block Diagram

Block diagram of the HSD is illustrated as in Fig. 6. In
the HSD, the LLOSD is the primary decoding, which will be
first deployed. If it fails to produce an intended codeword,
e.g., one that satisfies the ML condition [8], the LCC-BR
decoding will be deployed. In the LCC-BR decoding, each
test-vector is decoded through the BR interpolation and the
root-finding processes. For BCH codes, the root-finding can
be simplified into a partial operation, namely the partial root-
finding [26]. It provides extra TEPs for the LLOSD, enhancing

its error-correction capability. With the Chase decoding test-
vectors, the BR interpolation consists of their re-encoding
transform and the formation of interpolation module basis
isomorphism. They can be facilitated by utilizing the initial
estimated RS codeword v̂(0) and the Lagrange interpolation
polynomials T̃j(x) that were generated in the LLOSD, respec-
tively. Meanwhile, assuming the LLOSD preserves its list of
codeword candidates {v̂(0)}, a skipping rule is introduced to
eliminate the redundant test-vectors for the LCC-BR decoding.
The following subsection first briefly reviews the LCC-BR
decoding, and its integration with the LLOSD in formulating
the HSD with be further introduced.

B. The LCC-BR Decoding

Given the sorted received word Λ (r) of eq. (8), its η
(η < n − k′) least reliable positions (LRPs) can be denoted
as Ψ = {jn−η, jn−η+1, . . . , jn−1}, with its complementary
being Ψc = {j0, j1, . . . , jn−η−1}. For an error pattern e(ω) =

(e
(ω)
0 , e

(ω)
1 , . . . , e

(ω)
n−1) ∈ Fn

2 , its entries are e
(ω)
j = 0 or 1, if

j ∈ Ψ; and e
(ω)
j = 0, otherwise. Hence, 2η test-vectors can be

formulated as

rω = r + e(ω) = (r
(ω)
0 , r

(ω)
1 , . . . , r

(ω)
n−1), (49)

where ω = 0, 1, . . . , 2η − 1 indexes the test-vectors. In order
to specify an error pattern, we let ω =

∑η−1
i=0 2

ie
(ω)
jn−i−1

.
In particular, if ω = 0, e(0) = 0. First, rω needs to be
transformed by the initial estimated RS codeword v̂(0) that
was generated in the LLOSD as

rω 7→ zω : z
(ω)
j = r

(ω)
j − v̂

(0)
j , ∀j. (50)

This transform helps reduce the BR interpolation complexity,
as will be demonstrated below. For the transformed test-vectors
zω , z(ω)

j = 0, ∀j ∈ Θ. Meanwhile, the n interpolation points
of zω can be written as

(1, z
(ω)
0 ), (α, z

(ω)
1 ), . . . , (αn−1, z

(ω)
n−1). (51)

The LCC-BR decoding of zω aims to construct the minimal
polynomial Q(x, y) that interpolates the above points with
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a multiplicity of one. For this, it constructs a basis of the
interpolation module that consists polynomials defined in
F2m [x, y]. The module basis is reduced into a Gröbner basis
that contains the intended polynomial Q(x, y).

Let
V (x) =

∏
j∈Θ

(x− αj). (52)

It can be realized that V (x) interpolates k′ of the
n points of eq. (51). They are (αj0 , z

(ω)
j0

), (αj1 , z
(ω)
j1

),

· · · , (αjk′−1 , z
(ω)
jk′−1

). This leads to the formulation of a basis
of an isomorphic module Mω . It is defined by a subset of the
further transformed interpolation points. For this, the following
mappings between points in {αj |j ∈ Θc} × F2m are needed

F : (x, y) 7→
(
x,

y

V (x)

)
,

F−1 : (x, y) 7→ (x, yV (x)) .

(53)

Therefore, among the n interpolation points of eq. (51), those
defined by Θc can be further transformed as

(αj , z
(ω)
j ) 7→

(
αj ,

z
(ω)
j

V (αj)

)
, ∀j ∈ Θc. (54)

Let us define two seed polynomials as

G(x) =
∏
j∈Θc

(x− αj) (55)

and
Rω(x) =

∑
j∈Θc

z
(ω)
j T̃j(x), (56)

where

T̃j(x) =

∏
j′∈Θc,j′ ̸=j(x− αj′)∏n−1
j′=0,j′ ̸=j(α

j − αj′)
. (57)

T̃j(x) is also the Lagrange interpolation polynomial w.r.t.
code locator αj . Subsequently, the basis Bω of the isomorphic
module Mω can be formed by

Pω,0(x, y) = G(x), (58)

Pω,1(x, y) = y −Rω(x). (59)

It can be seen that for the transformed interpolation points

of eq. (54), Pω,0

(
αj ,

z
(ω)
j

V (αj)

)
= 0 and Pω,1

(
αj ,

z
(ω)
j

V (αj)

)
=

0, ∀j ∈ Θc. A basis reduction algorithm, e.g., the Mulders-
Storjohann (MS) algorithm [34] [35], can be applied to further
reduce Bω into a Gröbner basis B′

ω . It contains polynomials
P ′
ω,0(x, y) and P ′

ω,1(x, y). Among them, the minimal one 3 is

3Note that with the re-encoding transform, polynomials of F2m [x, y] are
arranged in the (1,−1)-revlex order [33]. Given two bivariate monomials
xµ1yν1 and xµ2yν2 with (1,−1)-weighted degree, the (1,−1)-revlex order
is defined as xµ1yν1 < xµ2yν2 , if µ1−ν1 < µ2−ν2, or µ1−ν1 = µ2−ν2
and ν1 < ν2. Given Q(x, y) =

∑
µ,ν Qµνxµyν ∈ F2m [x, y], the leading

monomial of Q is defined as the maximum monomial xµyν with Qµν ̸= 0
and the (1,−1)-weighted degree of Q is µ−ν. Moreover, the (1,−1)-revlex
order is imposed on the polynomials in F2m [x, y] by comparing their leading
monomials.

denoted as

Q∗
ω(x, y) = Q

∗(0)
ω (x) +Q

∗(1)
ω (x)y

= min{P ′
ω,0(x, y), P

′
ω,1(x, y)}.

(60)

Performing the inverse mapping of Q∗
ω(x, y), the interpolation

polynomial Qω(x, y) w.r.t. the transformed test-vectors zω can
be restored as

Qω(x, y) = V (x)Q
∗(0)
ω (x) +Q

∗(1)
ω (x)y. (61)

The estimated message polynomial of test-vector zω can be
obtained by finding its y-root as

ûω(x) = −V (x)Q
∗(0)
ω (x)

Q
∗(1)
ω (x)

. (62)

The intended decoded codeword v̂ω =
(
v̂
(ω)
0 , v̂

(ω)
1 , . . . , v̂

(ω)
n−1

)
can be further obtained by

v̂
(ω)
j = ûω

(
αj
)
+ v

(0)
j , ∀j. (63)

C. LLOSD and LCC-BR Integration

The above mentioned LCC-BR decoding is further inte-
grated with the LLOSD, forming the HSD for BCH codes.
The LLOSD plays a primary role in the decoding, while the
LCC-BR decoding provides extra TEPs for the LLOSD. It
enhances the error-correction capability of the LLOSD with
a limited decoding order τ . In this integration, the redundant
the LCC-BR decoding test-vectors can be eliminated based on
the LLOSD output list.

As introduced in Section V-A, the LCC-BR decoding is
deployed if the LLOSD fails to produce the intended code-
word. For the LCC-BR decoding, the LLOSD output list can
be utilized to identify its redundant test-vectors. For this, the
following Lemma 4 needs to be introduced.

Lemma 4. Given an LLOSD codeword candidate v̂, let
dH(v̂, rω) denote the Hamming distance between v̂ and test-
vector rω . If dH(v̂, rω) ⩽ t, where t is the error-correction
capability of the code, rω can be skipped.

Proof. Given a test-vector rω , if dH(v̂, rω) ⩽ t, the LCC-
BR decoding will produce v̂ because each Chase decoding
event can correct at most t errors.4 Therefore, the LCC-BR
decoding of rω is redundant. ■

Hence, some of the 2η test-vectors can be eliminated based
on the LLOSD output list. The following Lemma shows
that generating the isomorphic module basis in the LCC-
BR decoding and the RS systematic generator matrix in the
LLOSD share common computations.

Lemma 5. With the module seed polynomial G(x) of eq.
(55) and the Lagrange interpolation polynomials T̃j(x) of eq.
(57), the RS systematic generator matrix entries Hui

(αj),
where j ∈ Θc can be computed by

Hui
(αj) =

αiG(αi)

(αj − αi)T̃j(αj)
. (64)

4Note that we only consider an interpolation multiplicity of one. Further
based on Remark 1, the RS codes considered in this paper have a rate greater
than half. Hence, the error-correction capacity of each Chase decoding event
is t.
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Proof. Based on eqs. (20)−(23), matrix entries Hui

(
αj
)
,

with j ∈ Θc can be computed as in eq. (23). Further based on
eq. (22), the Lagrange interpolation polynomials T̃j(x) of eq.
(57) can be simplified into

T̃j(x) = αj
∏

j′∈Θc,j′ ̸=j

(x− αj′). (65)

Based on eq. (55), entries Hui
(αj) can be written as

Hui

(
αj
)
=

αi
∏

j′∈Θc

(
αi − αj′

)
αj (αj − αi)

∏
j′∈Θc,j′ ̸=j (α

j − αj′)

=
αiG(αi)

(αj − αi)T̃j(αj)
.

(66)

■
Therefore, in HSD, both the module seed polynomial G(x)

and the Lagrange interpolation polynomials T̃j(x) can be
computed once. They are then utilized in computing the RS
systematic generator matrix GRS and the isomorphic module
basis Bω .

By considering there is only one test-vector that yields the
intended TEP for the LLOSD, the test-vectors in the LCC-BR
decoding are processed in a sequential manner. This exchanges
the decoding latency for complexity. Under such an LCC-BR
decoding paradigm, when a new test-vector zω (ω > 0) is
decoded, its isomorphic module basis can be constructed based
on that of the first test vector z0, as demonstrated by the
following Lemma 6.

Lemma 6. With the first isomorphic module basis B0, the
isomorphic module basis Bω w.r.t. test-vector zω can be
constructed as

Pω,0(x, y) = P0,0(x, y), (67)

Pω,1(x, y) = P0,1(x, y)−Υω(x), (68)

where
Υω(x) =

∑
j∈Ψ,e

(ω)
j ̸=0

T̃j(x) (69)

denotes the difference between polynomials Pω,1(x, y) and
P0,1(x, y).

Proof. With Pω,0(x, y) = P0,0(x, y) = G(x), it interpolates
the n−k′ points of eq. (54). If Pω,1(x, y) = y−Rω(x), it also
interpolates the points. Therefore, polynomials Pω,0(x, y) and
Pω,1(x, y) span the module Mω of zω . Based on eqs. (49)
and (50),

Rω(x) =
∑
j∈Θc

z
(ω)
j T̃j(x)

=
∑
j∈Θc

(z
(0)
j + e

(ω)
j )T̃j(x),

where e
(ω)
j = 0, ∀j ∈ Ψc and e

(ω)
j = r

(ω)
j − r

(0)
j . Hence,

Rω(x) = R0(x) +
∑

j∈Ψ,e
(ω)
j ̸=0

T̃j(x) and Pω,1(x, y) =

P0,1(x, y)−Υω(x). ■
The following Lemma 7 further shows evaluation of the

root-finding outcome of eq. (62) over the MRPs provides a
TEP for the LLOSD.

Lemma 7. Evaluation of the root-finding outcome ûω(x)
of eq. (62) over the MRPs, i.e. êω = (ûω(α

j0), ûω(α
j1), . . . ,

ûω(α
jk′−1)), constitutes a TEP for the LLOSD.

Proof. Based on eqs. (62)−(63), the estimated codeword
is

v̂ω =
(
v̂
(ω)
0 , v̂

(ω)
1 , . . . , v̂

(ω)
n−1

)
= (ûω(1), ûω(α), . . . , ûω(α

n−1)) + v̂(0).
(70)

With the systematic property of the RS code, the estimated
codeword v̂ω can also be generated as

v̂ω = (ûω(α
j0), ûω(α

j1), . . . , ûω(α
jk′−1)) ·GRS + v̂(0)

= êω ·GRS + v̂(0).
(71)

Pairing with eq. (27), it can be realized that êω =
(ûω(α

j0), ûω(α
j1), . . . , ûω(α

jk′−1)) constitutes a TEP for the
LLOSD. ■

Moreover, based on the binary nature of BCH codes, the
root-finding outcome of eq. (62) can be simplified into a partial
operation that is characterized in the following Theorem 8.

Theorem 8. Given an interpolation polynomial Qω(x, y) =

V (x)Q
∗(0)
ω (x) + Q

∗(1)
ω (x)y, the estimated TEP êω =

(ûω(α
j0), ûω(α

j1), . . . , ûω(α
jk′−1)) can be calculated as

ûω(α
j) =

{
1, if Q

∗(1)
ω (αj) = 0;

0, otherwise.
(72)

Proof. Since we only consider binary error patterns, i.e.,
êω ∈ Fk′

2 , if the entry ûω(α
j) 6= 0, it indicates an error at

the position j. Based on eq. (62), the error positions over the
MRPs can be determined by finding the roots of Q

∗(1)
ω (x).

We first consider the case of Q
∗(1)
ω (αj) = 0, where j ∈ Θ. If

αj is a single root of Q
∗(1)
ω (x), it possesses a factor x − αj .

Based on eq. (52), V (x) also has such a factor. Hence, x−αj

becomes a common factor for the numerator and denominator
of eq. (62), which can be canceled out. Since x − αj is
not a common factor between Q

∗(0)
ω (x) and Q

∗(1)
ω (x) [36],

Q
∗(0)
ω (αj) 6= 0 and ûω(α

j) 6= 0. Furthermore, if αj is a double
root of Q

∗(1)
ω (x), Q

∗(1)
ω (x) possesses a factor of (x − αj)2.

Since in this case, V (x)Q
∗(0)
ω (x) only has a factor of x−αj ,

Q
∗(1)
ω (x) is not a factor of V (x)Q

∗(0)
ω (x). Based on eq. (62),

the estimated message polynomial ûω(x) cannot be recovered.
Therefore, if Q

∗(1)
ω (αj) = 0, ûω(α

j) 6= 0. It can be assigned
as 1, indicating an error at position j. ■

It should be noted that this partial root-finding approach
and that of [26] are different. By exploiting the property that
with j ∈ Θ, αj is a root of polynomial V (x), this partial
root-finding approach is considerably simpler than that of [26].
Based on the LLOSD output, the following Corollary 9 further
provides a criterion for skipping the interpolation polynomial
whose partial root-finding result had already been processed
by the LLOSD.

Corollary 9. Given an interpolation polynomial Qω(x, y) =

V (x)Q
∗(0)
ω (x) + Q

∗(1)
ω (x)y, if deg Q

∗(1)
ω (x) ⩽ τ , the cor-

responding estimated TEP êω had been processed by the
LLOSD.

Proof. Based on Theorem 8, evaluation of ûω(x) over the
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Algorithm 2 The HSD Algorithm
Require: Y , τ , η;
Ensure: v̂opt;

1: Perform the order-τ LLOSD as in Algorithm 1;
2: If it fails to find the ML codeword
3: Construct 2η test-vectors as in eq. (49);
4: For each test-vector rω , do
5: If rω does not satisfy the skipping rule of Lemma

4;
6: Transform rω to zω as in eq. (50);
7: Construct basis Bω as in eqs. (67) and (68);
8: Reduce Bω into a Gröbner basis B′

ω;
9: Determine Qω(x, y) as in eq. (61) ;

10: Perform partial root-finding to obtain êω as in
eq. (72);

11: Determine the estimated codeword v̂ω as in
Steps 6-10 of Algorithm 1 ;

12: If v̂ω satisfies the ML criterion as in eq. (14)
13: Terminate the decoding;
14: End for
15: Return v̂opt;
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Fig. 7. Performance of the (127, 99) BCH code.

MRPs are determined by Q
∗(1)
ω (x), i.e., if ûω(α

j) 6= 0, where
j ∈ Θ, Q

∗(1)
ω (αj) = 0. Therefore, wt(êω) ⩽ deg Q

∗(1)
ω (x).

Hence, if deg Q
∗(1)
ω (x) ⩽ τ , the estimated TEP êω had been

processed by the LLOSD. The partial root-finding of Qω(x, y)
can be skipped. ■

After determining êω , the estimated codeword v̂ω can be
further obtained as in eqs. (26) and (27). If the estimated
codeword v̂ω satisfies the ML criterion [8], the HSD will
be terminated and it yields v̂ω as the decoding output v̂opt.
Otherwise, it will be added into the HSD output list. If the
codeword that satisfies the ML criterion cannot be produced
through the decoding, the codeword that yields the minimum
correlation distance with r will be selected as v̂opt. Summariz-
ing the above description, the HSD algorithm is shown below
as in Algorithm 2.

TABLE III
NUMERICAL RESULTS IN DECODING THE (127, 99) BCH CODE

A. Decoding Complexity.

Algorithms Eb/N0 Complexity
(dB) F2 oper. F128 oper. Floating oper.

OSD (1)
4 1.25× 105 470
5 1.24× 105 78
6 1.24× 105 11

LLOSD (3)
4 2.64× 105 9
5 4.22× 104 9
6 6.71× 103 9

HSD (1, 8)
4 9.12× 104 27
5 1.67× 104 12
6 5.65× 103 9

HSD (1, 6)
4 2.52× 104 13
5 7.93× 103 10
6 5.44× 103 9

B. Decoding Latency.

Algorithms Eb/N0 Latency
(dB) (µs)

OSD (1)
4 9.90× 101

5 8.77× 101

6 8.64× 101

LLOSD (3)
4 7.91× 103

5 1.15× 103

6 4.29× 101

HSD (1, 8)
4 6.16× 102

5 9.42× 101

6 1.39× 101

HSD (1, 6)
4 1.48× 102

5 3.15× 101

6 1.05× 101

D. Decoding Performances

Fig. 7 shows the performance in decoding the (127, 99)
BCH code, where the HSD is parameterized by (τ, η). Note
that for such a long BCH code, the LLOSD requires an
impractical order to yield a high decoding performance. The
decoding complexity becomes formidable. By integrating the
LLOSD and the LCC-BR decoding, the HSD yields a high
decoding performance with a low LLOSD order. E.g., both the
HSD (1, 6) and the HSD (1, 8) can outperform the LLOSD
(3) and the OSD (1).

Table III compares both the decoding complexity and la-
tency of both the HSD, the LLOSD, and the OSD. It can be
seen that the HSD (1, 8) can not only outperform the LLOSD
(3), but also being simpler. With the assistance of LCC-BR
in providing TEPs, the HSD can yield a competent decoding
performance with a smaller LLOSD order,leading to a reduced
complexity. Meanwhile, both the HSD (1, 6) and the HSD
(1, 8) require fewer F128 operations than the F2 operations
required by the OSD (1). As the SNR increases, complexity of
the HSD (1, 6) and the HSD (1, 8) converge. Our analysis in
Section VI will show that as the SNR increases, the LCC-BR
decoding is rarely deployed and NTEPs converges to one. Their
decoding complexities are only come from computing the RS
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Fig. 8. Comparison of the YSVL OSD, the CJ OSD and the HSD for decoding the length-127 BCH codes in: (a) the required SNR in reaching a decoding
FER of 10−2; (b) the required amount of F2/F128 operations in reaching a decoding FER of 10−2; (c) the required SNR in reaching a decoding FER of
10−4; (d) the required amount of F2/F128 operations in reaching a decoding FER of 10−4.

systematic generator matrix. Table III-B further compares the
simulated decoding latency of the decoding algorithms. In both
the HSD and the LLOSD, it is assumed that rows of GRS are
generated in parallel. It shows that both the HSD (1, 6) and
the HSD (1, 8) can significantly reduce the decoding latency
over the LLOSD.

To examine the applicable code rate range of the HSD, Figs.
8(a) and 8(b) compare the required SNR and complexity of
the HSD, the YSVL OSD and the CJ OSD for decoding the
length-127 BCH codes in reaching a decoding FER of 10−2.
Their decoding parameters are also indicated. At the rate 0.5,
the HSD requires a larger SNR and a greater amount of F128

operations than the F2 operations that are required by the
YSVL OSD and the CJ OSD. However, as the rate increases,
the HSD starts to show its advantage over the YSVL OSD
and the CJ OSD. When the rate reaches 0.83, the amount
of F128 operations required by the HSD is only 22% and
13% of F2 operations required by the YSVL OSD and the CJ
OSD, respectively. Figs. 8(c) and 8(d) further show the same
measurements for the codes to reach a decoding FER of 10−4.
It can be seen that the required SNRs of these algorithms are

close, except for the rate of 0.83. Similarly, as the code rate
increases beyond 0.5, the HSD starts to show bigger advantage
over other facilitated OSDs, which are demonstrated by the
amount of F128 operations required by the HSD is far fewer
than that of F2 operations required by the OSDs. Therefore,
the HSD is more effective in decoding long and high rate BCH
codes. In this case, the complexity of generating the systematic
generator matrix becomes dominant, which is O(n2). It is
asymptotically lower than the GE complexity of O(n3) in the
OSD an its facilitated variants.

Finally, Fig. 9 shows the performance in decoding the
(255, 223) BCH code. The progressive LCC (PLCC) de-
coding [27] is also presented for comparison, which is pa-
rameterized by the number of the LRPs η. Their decoding
complexity are also presented in Table IV. Note that both the
HSD (1, 6) and HSD (1, 8) can outperform the OSD (1)
and the LLOSD (2). They perform similarly as the PLCC
(6) and PLCC (8), respectively. Table IV again shows that
the HSD (1, 8) requires fewer F256 operations than the F2

operations required by the OSD (1). It is also simpler than the
PLCC (8) decoding. Meanwhile, the HSD (1, 8) exhibits a
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TABLE IV
NUMERICAL RESULTS OF COMPLEXITY IN DECODING THE (255, 223) BCH CODE

Algorithms Eb/N0 Complexity
(dB) F2 oper. F256 oper. Floating oper.

OSD (1)
4 3.40× 105 2559
5 2.91× 105 621
6 2.64× 105 35

LLOSD (2)
4 5.60× 104 6
5 1.91× 104 9
6 1.15× 104 9

PLCC (8)
4 1.58× 106 60
5 3.75× 105 21
6 4.71× 104 10

HSD (1, 8)
4 4.16× 105 59
5 9.86× 104 20
6 1.33× 104 10
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Fig. 9. Performance of the (255, 223) BCH code.

higher complexity than the LLOSD (2), showing the cost of its
decoding performance advantage. However, it should be noted
that the HSD (1, 8) and the PLCC (8) possess the same error-
correction capability as the LLOSD (4). When η = n−k′ = 8
and t = 4, the transmitted codeword will be included in the
decoding output list if the number of errors in the MRPs is
not greater than four. But the LLOSD (4) needs to process at
most 1.5× 108 TEPs, becoming impractical in decoding this
long BCH code.

VI. DECODING COMPLEXITY

This section analyzes the complexity of both the LLOSD
and the HSD algorithms. It is referred as the amount of
finite field arithmetic operations in decoding a codeword. The
theoretical characterization in part vindicates our complexity
numerical results that have been presented so far. It also
unveils the complexity insights of the proposals.

A. The LLOSD Complexity

The analysis of Section III-C shows that the LLOSD can
only produce few BCH codeword candidates despite its decod-
ing order. Hence, it only requires few floating point operations,
which come from calculating the correlation distance of the
estimated codeword and assessing whether they are the ML
one. Therefore, the LLOSD complexity is dominated by per-
forming F2m operations, which can also been demonstrated
by our numerical results of Tables I-A and III-A. Let CLLOSD
denote the number of F2m operations required by the LLOSD.
It comes from computing the RS systematic generator matrix
and the re-encoding that finds the BCH codeword candidates,
which are denoted as Csys and Crec, respectively. The re-
encoding involves the generation of the initial estimated RS
codeword v̂(0) and the reprocessing of the TEPs as in eq.
(27), where their complexity are further denoted as Cini and
Crep, respectively. Therefore, the worst-case complexity of the
LLOSD can be characterized as

CLLOSD = Csys + Cini + Crep. (73)

Further let NTEPs denote the average number of TEPs pro-
cessed by the decoding, the average complexity of the LLOSD
is

CLLOSD = Csys + Cini +
NTEPs

N TEPs
· Crep. (74)

We now analyze Csys, Cini and Crep as follows.
Lemma 10. Complexity of computing the RS systematic

generator matrix is Csys = 2(n2 − k′
2
+ k′).

Proof. The construction of matrix GRS is real-
ized as in eq. (23). Note that αi

∏
j′∈Θc

(
αi − αj′

)
and

αj
∏

j′∈Θc,j′ ̸=j

(
αj − αj′

)
are the common factors for entries

of each row and entries of each column, respectively. Hence,
computing k′ factors αi

∏
j′∈Θc

(
αi − αj′

)
with i ∈ Θ and

n−k′ factors αj
∏

j′∈Θc,j′ ̸=j

(
αj − αj′

)
with j ∈ Θc require

2k′(n− k′ + 1) and 2(n− k′)2 F2m operations, respectively.
In addition, 2k′(n − k′) F2m operations are required to fully
determine the k′(n − k′) entries. Hence, the complexity of
computing GRS is Csys = 2(n2 − k′

2
+ k′). ■
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Note that in the LLOSD, the computation of GRS replaces
the GE in the OSD. The latter exhibits an F2 computational
complexity of O(n3), while the above Lemma 10 shows that
computing GRS exhibits an F2m computational complexity of
O(n2).

Lemma 11. Complexity of generating the initial estimated
RS codeword and reprocessing of the TEPs are Cini = k′(n−
k′) and Crep ≤ (n− k′)

∑τ
ρ=0 ρ

(
k′

ρ

)
, respectively.

Proof. Computing the initial estimated RS codeword v̂(0)

as in eq. (24) requires k′(n − k′) F2m operations. With an
LLOSD order τ , N TEPs =

∑τ
ρ=0

(
k′

ρ

)
. Given a TEP e

(ω)
[Θ] with

wt(e(ω)
[Θ] ) = ρ, computing a codeword symbol requires ρ F2m

operations. Theorem 2 shows that the re-encoding process of a
TEP can be terminated once a codeword symbol is identified as
non-binary. Therefore, the complexity of reprocessing a TEP
is upper bounded by the case when all re-encoded symbols
are binary. After computing n− k′ codeword symbols in Θc,
the complexity of reprocessing the TEPs is upper-bounded by

Crep ≤ (n− k′)

τ∑
ρ=0

ρ

(
k′

ρ

)
.

■
Based on eq. (73), it can be seen that the order-τ LLOSD

exhibits a worst-case complexity of O(n2+k′
τ
). For the order-

τ OSD, its worst-case complexity is O(n3+kτ ). Since k′ > k
and a greater order is needed for the LLOSD to achieve a
similar performance as the OSD, LLOSD exhibits a higher
worst-case complexity. Both the LLOSD-B and the SLLOSD
can also reduce the worst-case complexity. It should be noted
that if the TEPs are processed sequentially, the LLOSD will
be terminated once the ML codeword is found. Hence, the
LLOSD does not need to process all TEPs. Fig.10 shows our
numerical results of NTEPs in decoding the (31, 21) and the
(63, 45) BCH codes. The LLOSD is functioning with τ = 1
and τ = 2. It can be seen that as the SNR increases, the
ML codeword can be found earlier through processing fewer
TEPs. With NTEPs → 1, the LLOSD complexity becomes only
dominated by Csys and Cini. In this case, the LLOSD exhibits
a complexity of O(n2), which is lower than the asymptotic
complexity O(n3) of the OSD.

B. The HSD Complexity

Besides the LLOSD complexity, the HSD complexity
should further consider that of the BR interpolation and
the partial root-finding, which are denoted as Cint and Cprf,
respectively. Let NTVs denote the average number of test-
vectors in a decoding event. The HSD complexity can be
characterized as

CHSD = CLLOSD +
NTVs

2η
· (Cint + Cprf). (75)

Lemma 12. Complexity of the BR interpolation is Cint =
(n− k′)2 + 2η−1η(n− k′) + 2η+2(n− k′)(n− k′ + 1).

Proof. The BR interpolation includes the basis construction
and reduction. The former is realized as in eqs. (67) and (68),
in which G(x) and T̃j(x) are computed during the LLOSD.

��
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Fig. 10. NTEPs in the LLOSD with τ = 1, 2.

Since deg G(x) = n − k′ − 1 and |Θc| = n − k′, computing
R0(x) requires at most (n − k′)2 F2m operations. Eqs. (67)
and (68) show that computing Rω(x) with wt(e(ω)) = i
requires i linear combinations of T̃j(x) and R0(x). Hence,
constructing bases for the 2η−1 isomorphic modules M̃ω also
requires (n−k′) ·

∑η
i=1 i

(
η
i

)
= 2η−1η(n−k′) F2m operations.

Furthermore, based on [34], the MS basis reduction requires
at most 2η+2(n− k′)(n− k′ + 1) F2m operations. ■

Lemma 13. Complexity of the partial root-finding is Cprf =
2η · k′(n− k′).

Proof. The partial root-finding is realized as in eq. (72).
Based on [36], degQ

∗(1)
ω (x) ⩽ n−k′

2 , computing Q
∗(1)
ω (αj)

with j ∈ Θ requires (n − k′) F2m operations. Hence, the
complexity of partial root-finding is Cprf = 2η · k′(n− k′). ■

It should be noted that if the LLOSD finds the BCH code-
word that satisfies the ML criterion, the LCC-BR decoding
will not be deployed, and NTVs = 0. Consequently, the HSD
complexity converges to that of the LLOSD. This is often
the case if the channel condition is sufficiently good. Fig. 11
shows our numerical results of NTVs in decoding the (63, 39)
and the (255, 223) BCH codes. In the HSD, the LLOSD
is functioning with τ = 1 and the LCC-BR decoding is
functioning with η = 4 and 6. Note that it is assumed that in
LCC-BR decoding, the test-vectors are decoded sequentially.
It can be seen that as the SNR increases, fewer test-vectors are
decoded by the LCC-BR decoding, leading to a lower HSD
complexity. When SNR = 6 dB, NTVs converges to zero. This
implies most decoding events terminate without deploying the
LCC-BR decoding. In this case, generating the RS systematic
generator matrix dominates the decoding complexity.

VII. CONCLUSION

This paper has proposed the LLOSD and its enhanced
variants for BCH codes. They are designed based on the
property that BCH codes are binary subcodes of RS codes.
Consequently, BCH codeword candidates can be produced
through the RS systematic generator matrix whose entries can
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Fig. 11. NTVs in the HSD with τ = 1 and η = 4, 6.

be computed in parallel. It replaces the latency-orienting GE in
the conventional OSD. It has been shown that by eliminating
the RS re-encoding that does not produce a binary codeword,
the LLOSD requires far fewer F2m operations than the F2

operations required by the OSD. A concatenated perspective
of the LLOSD has been presented, showing the LLOSD can
be interpreted as a serial concatenation between the parity-
checker of a punctured BCH code and a systematic encoder
of a linear block code. Such a re-enterpretation unveils the
low-complexity feature of the LLOSD. This concatenated
perspective also enables the conversion of non-binary re-
encoding operations in the LLOSD into binary operations,
further facilitating the LLOSD. The segmented LLOSD has
also been proposed to reduce the decoding complexity. By
employing the segmented LLOSD in a concatenated manner,
the proposed LLOSD variant has demonstrated advantages
over other state-of-the-art OSD variants. In order to decode
longer BCH codes, the HSD has been proposed. It integrates
the LLOSD and the LCC-BR decoding. The latter provides
extra TEPs for the LLOSD, achieving a high performance
with a low decoding order. Complexity and performance of the
proposed decoding have been analyzed. Our simulation results
have demonstrated that the LLOSD yields both complexity
and latency advantages over the OSD. The HSD is more
effective in decoding longer BCH codes. They also exhibit the
complexity advantage over several state-of-the-art decoding
for BCH codes.
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[4] M. Coşkun et al., “Efficient error-correcting codes in the short block-
length regime,” Phys. Commun., vol. 34, pp. 66–79, 2019.

[5] M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes
based on ordered statistics,” IEEE Trans. Inf. Theory, vol. 41, no. 5, pp.
1379–1396, 1995.

[6] Y. Wu and C. Hadjicostis, “Soft-decision decoding using ordered recod-
ings on the most reliable basis,” IEEE Trans. Inf. Theory, vol. 53, no. 2,
pp. 829–836, 2007.

[7] C. Yue et al., “A revisit to ordered statistics decoding: distance distri-
bution and decoding rules,” IEEE Trans. Inf. Theory, vol. 67, no. 7, pp.
4288–4337, 2021.

[8] T, Kaneko et al., “An efficient maximum-likelihood decoding algorithm
for linear block codes with algebraic decoder,” IEEE Trans. Inf. Theory,
vol. 40, no. 2, pp. 320–327, 1994.

[9] W. Jin and M. Fossorier, “Probabilistic sufficient conditions on optimal-
ity for reliability based decoding of linear block codes,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Seattle, WA, USA, July 2006.

[10] S. Alnawayseh and P. Loskot, “Ordered statistics-based list decoding
techniques for linear binary block codes,” EURASIP J. Wirel. Commun.
Netw., vol. 2012, no. 1, pp. 1–12, Dec.2012.

[11] A. Valembois and M. Fossorier, “Box and Match techniques applied to
soft-decision decoding,” IEEE Trans. Inf. Theory, vol. 50, no. 5, pp.
796–810, 2004.

[12] M. Fossorier, “Reliability-based soft-decision decoding with iterative
information set reduction,” IEEE Trans. Inf. Theory, vol. 48, no. 12,
pp. 3101–3106, 2002.

[13] W. Jin and M. Fossorier, “Reliability-based soft-decision decoding with
multiple biases,” IEEE Trans. Inf. Theory, vol. 53, no. 1, pp. 105–120,
2007.

[14] Y. Wu and C. Hadjicostis, “Soft-decision decoding of linear block
codes using preprocessing and diversification,” IEEE Trans. Inf. Theory,
vol. 53, no. 1, pp. 378–393, Jan. 2007.

[15] S. Yu and Q. Huang, “Hard reliability-based ordered statistic decoding
and its application to McEliece public key cryptosystem,” IEEE Com-
mun. Lett., vol. 26, no. 3, pp. 490–494, 2022.

[16] C. Choi and J. Jeong, “Fast soft decision decoding algorithm for linear
block codes using permuted generator matrices,” IEEE Commun. Lett.,
vol. 25, no. 12, pp. 3775–3779, 2021.

[17] C. Yue et al., “Ordered statistics decoding with adaptive Gaussian elim-
ination reduction for short codes”. in Proc. IEEE Globecom Workshops
(GC Wkshps), Rio de Janeiro, Brazil, 2022, pp. 492-497.

[18] M. Jalaleddine et al., “Partial ordered statistics decoding with enhanced
error patterns”. in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Taipei, ROC,
June. 2023.

[19] K. Duffy, J. Li, and M. Medard “Capacity-achieving guessing random
additive noise decoding,” IEEE Trans. Inf. Theory, vol. 65, no. 7, pp.
4023–4040, July 2019.

[20] J. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans.
Inf. Theory, vol. IT-15, no. 1, pp. 122–127, Jan. 1969.

[21] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
and algebraic geometric codes,” IEEE Trans. Inf. Theory, vol. 45, no. 1,
pp. 1757–1767, Mar. 1999.

[22] R. Kötter and A. Vardy, “Algebraic soft-decision decoding of Reed–
Solomon codes,” IEEE Trans. Inf. Theory, vol. 49, no. 11, pp. 2809–
2825, Nov. 2003.
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